Abstract

AbstractSuccessful command and control (C2) of autonomous vehicles poses challenges that are unique to the marine environment, primarily highly restrictive acoustic communications throughput. To address this, the Unified C2 architecture presented here uses a highly compressed short message encoding scheme (Dynamic Compact Control Language or DCCL) to transfer commands and receive vehicle status. DCCL is readily reconfigurable to provide the flexibility needed to change commands on short notice. Furthermore, operation of multiple types of vehicles requires a C2 architecture that is both scalable and flexible to differences among platform hardware and abilities. The Unified C2 architecture uses the MOOS‐IvP autonomy system to act as a “backseat driver” of the vehicle. This provides a uniform interface to the control system on all the vehicles. Also, a hierarchical configuration system is used to allow single changes in configuration to propagate to all vehicles in operation. Status data from all vehicles are displayed visually using Google Earth, which also allows a rapid meshing of data from other sources (sensors, automatic identification system, radar, satellites) from within, as well as outside of, the MOOS‐IvP architecture. Results are presented throughout from the CCLNET08, SQUINT08, GLINT08, GLINT09, SWAMSI09, and DURIP09 experiments involving robotic marine autonomous surface craft (ASCs) and Bluefin, OceanServer, and NATO Undersea Research Centre (NURC) autonomous underwater vehicles (AUVs). © 2010 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.