Abstract

A unification in terms of exact solutions for massless Klein-Gordon, Dirac, Maxwell, Rarita-Schwinger, Einstein, and bosonic and fermionic fields of any spin is presented. The method is based on writing all of the relevant dynamical fields in terms of products and derivatives of pre-potential functions, which satisfy the d'Alembert equation. The coupled equations satisfied by the pre-potentials are non-linear. Remarkably, there are particular solutions of (gradient) orthogonal pre-potentials that satisfy the usual wave equation which may be used to construct exact non-trivial solutions to Klein-Gordon, Dirac, Maxwell, Rarita-Schwinger, (linearized and full) Einstein and any spin bosonic and fermionic field equations, thus giving rise to a unification of the solutions of all massless field equations for any spin. Some solutions written in terms of orthogonal pre-potentials are presented. Relations of this method to previously developed ones, as well as to other subjects in physics are pointed out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call