Abstract

From the Killing spinor equation and the equations satisfied by their bilinears, we deduce some well-known bosonic and fermionic field equations of mathematical physics. Aside from the trivially satisfied Dirac equation, these relativistic wave equations in curved spacetimes, respectively, are Klein-Gordon, Maxwell, Proca, Duffin-Kemmer-Petiau, Kähler, twistor, and Rarita-Schwinger equations. This result shows that, besides being special kinds of Dirac fermions, Killing fermions can be regarded as physically fundamental. For the Maxwell case, the problem of motion is analysed in a reverse manner with respect to the studies of Einstein-Groemer-Infeld-Hoffmann and Jean Marie Souriau. In the analysis of the gravitino field, a generalised 3-ψ rule is found which is termed the vanishing trace constraint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.