Abstract

Choosing the right first quantization basis in quantum optics is critical for the interpretation of experimental results. The usual frequency basis is, for instance, inappropriate for short, subcycle waveforms. Deriving first quantization in time domain shows that the electromagnetic field is not directly proportional, nor even causally related, to the photonic field (the amplitude probability of a photon detection). We derive the relation between the two and calculate the statistics of the electromagnetic field for specific states in time domain, such as the single photon Fock state. We introduce the dual of the Hamiltonian in time domain and extend the concept of quadratures to all first quantization bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.