Abstract
The emergence of sporophytes, that is, diploid multicellular bodies in plants, facilitated plant diversification and the evolution of complexity. Although sporophytes may have evolved in an ancestral alga exhibiting a haplontic life cycle with a unicellular diploid and multicellular haploid (gametophyte) phase, the mechanism by which this novelty originated remains largely unknown. Ulotrichalean marine green algae (Ulvophyceae) are one of the few extant groups with haplontic-like life cycles. In this study, we show that zygotes of the ulotrichalean alga Monostroma angicava, which usually develop into unicellular cysts, exhibit a developmental variation producing multicellular reproductive sporophytes. Multicellular development likely occurred stochastically in individual zygotes, but its ratio responded plastically to growth conditions. Sporophytes showed identical morphological development to gametophytes, which should reflect the expression of the same genetic programme directing multicellular development. Considering that sporophytes were evolutionarily derived in Ulotrichales, this implies that sporophytes emerged by co-opting the gametophyte developmental programme to the diploid phase. This study suggests a possible mechanism of sporophyte formation in haplontic life cycles, contributing to the understanding of the evolutionary transition from unicellular to multicellular diploid body plans in green plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.