Abstract
Clusterin is a stress-responsive and highly glycosylated secretory protein that plays cytoprotective role in most body fluids. In addition to extracellular clusterin, several intracellular clusterin variants that are rather cytotoxic have been recently uncovered under diverse pathological conditions. Although these variants revealed heterogeneity in their glycan modification, its significance in many diseases remains to be validated. Here, we found that clusterin is differentially metabolized by two well-characterized ER stress inducers. Thapsigargin induced retrotranslocation and rapid degradation of clusterin from the endoplasmic reticulum, whereas tunicamycin failed to degrade but rather retained clusterin in the endoplasmic reticulum. Important sorting determinant for these processes proved to be N-glycan moieties that are required for the prevention of terminal misfolding and aggregation of clusterin in the endoplasmic reticulum. This study provides a mechanistic insight into the generation of noble cytotoxic variant of intracellular clusterin and an idea about molecular pathogenesis of diseases associated with chronic endoplasmic reticulum stress, such as neurodegeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biochemistry and Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.