Abstract
BackgroundIntrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack stable tertiary and/or secondary structure yet fulfills key biological functions. The recent recognition of IDPs and IDRs is leading to an entire field aimed at their systematic structural characterization and at determination of their mechanisms of action. Bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. These activities complement the functions of structured proteins. IDPs and IDRs were shown to participate in both one-to-many and many-to-one signaling. Alternative splicing and posttranslational modifications are frequently used to tune the IDP functionality. Several individual IDPs were shown to be associated with human diseases, such as cancer, cardiovascular disease, amyloidoses, diabetes, neurodegenerative diseases, and others. This raises questions regarding the involvement of IDPs and IDRs in various diseases.ResultsIDPs and IDRs were shown to be highly abundant in proteins associated with various human maladies. As the number of IDPs related to various diseases was found to be very large, the concepts of the disease-related unfoldome and unfoldomics were introduced. Novel bioinformatics tools were proposed to populate and characterize the disease-associated unfoldome. Structural characterization of the members of the disease-related unfoldome requires specialized experimental approaches. IDPs possess a number of unique structural and functional features that determine their broad involvement into the pathogenesis of various diseases.ConclusionProteins associated with various human diseases are enriched in intrinsic disorder. These disease-associated IDPs and IDRs are real, abundant, diversified, vital, and dynamic. These proteins and regions comprise the disease-related unfoldome, which covers a significant part of the human proteome. Profound association between intrinsic disorder and various human diseases is determined by a set of unique structural and functional characteristics of IDPs and IDRs. Unfoldomics of human diseases utilizes unrivaled bioinformatics and experimental techniques, paves the road for better understanding of human diseases, their pathogenesis and molecular mechanisms, and helps develop new strategies for the analysis of disease-related proteins.
Highlights
Disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack stable tertiary and/or secondary structure yet fulfills key biological functions
Introducing intrinsically disordered proteins Proteins are the major components of the living cell
Protein dysfunctions may cause development of various pathological conditions For more than 75 years it has been believed that the specific functionality of a given protein is predetermined by its unique 3-D structure [1,2]
Summary
Disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack stable tertiary and/or secondary structure yet fulfills key biological functions. Bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. These activities complement the functions of structured proteins. Protein dysfunctions may cause development of various pathological conditions For more than 75 years it has been believed that the specific functionality of a given protein is predetermined by its unique 3-D structure [1,2] For these structured proteins, the sequence o structure o function paradigm has become paramount. The amino acid sequence determines the protein's unique 3-D structure
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have