Abstract

Restriction endonucleases (REs) have been widely used to produce banding patterns on chromosomes, but it remains uncertain to what extent the patterns are due to the sequence specificity of the enzymes, and to what extent chromatin structure influences the pattern of digestion. To throw light on this question, we have digested with restriction endonucleases unfixed chromosomes prepared in two different ways (isolated, and whole metaphase cells spread with a cytocentrifuge) and compared the results with those obtained on conventionally fixed chromosomes. Unfixed isolated chromosomes are easily destroyed by REs; after fixation with cold methanol, which produced minimal alteration to the chromatin structure, the chromosomes are resistant to the action of REs, and conventional methanol-acetic acid fixation is required to permit the induction of banding patterns by REs. Unfixed cytocentrifuge preparations, in which the chromosomes are still surrounded by cytoplasm, are much more resistant to the action of REs, and again banding patterns were only induced after methanol-acetic acid fixation. We conclude that the action of restriction endonucleases on chromosomes is strongly influenced by chromatin organisation, and that methanol-acetic acid fixation is required to permit the induction of conventional banding patterns on chromosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.