Abstract
Abstract We investigate the transverse magneto-optic Kerr effect (TMOKE) of magnetoplasmonic crystals grown on top of commercial optical disks. From full angle-resolved scans we can identify Wood’s anomalies related to the excitation of plasmons of different orders. From these maps we also detect a wide range of wavelengths and angles of incidence for which the TMOKE signal is increased due to the interaction of light with surface propagating plasmons. Remarkably, conditions are established for unexpectedly large responses at quasi-normal incidence, where, by fundamental symmetry reasons, the intrinsic TMOKE should be vanishingly small. The key towards this unexpected outcome is to engineer the geometry of magnetoplasmonic crystals, so that first-order plasmon dispersion lines run up towards quasi-normal angles of incidence. These results provide general rules for magneto-optic enhancement and, in particular, show the potential of standard commercial disks as platforms for enhanced magneto-optic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.