Abstract

Oryzomys couesi cozumelae is an endemic, threatened rodent from Cozumel Island, Mexico. We estimated its genetic diversity and structure by analyzing microsatellite loci in 228 samples from 12 sampling sites widely distributed throughout the island. Unexpected high levels of genetic and allelic diversity were found: a total of 54 alleles, an average of 10.8 alleles per locus, and high heterozygosity values (mean H O = 0.624, H E = 0.690 and H Nei = 0.689). These values are higher than those reported for small sized insular mammals, higher than that found in 37 individuals of the mainland O. couesi from southern Mexico ( H O = 0.578) that we analyzed for comparative purposes, and similar to those of other mainland small mammal populations. Despite factors that affect Cozumel’s biota, such as exotic predators and competitors, hurricanes, seasonal population fluctuations and anthropogenic activities, no evidence of genetic bottlenecks was found. A significant population structure was observed and a model of isolation-by-distance was supported. Our findings render O. c. cozumelae a high conservation value, not only for its high genetic diversity and structure, but because available data suggests that its population has declined significantly in recent years. Further habitat fragmentation and population isolation could result in a higher genetic structure and loss of genetic diversity. The protection of habitat, the maintenance of habitat connectivity and the removal of introduced competitors and predators are a conservation priority. Acknowledging that the genetic structure of populations has crucial conservation implications, the present genetic information should be taken into account in management plans for the conservation of O. c. cozumelae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call