Abstract
Several neurological disorders, such as myotonic dystrophy are caused by expansions of short tandem repeats (STRs) which can be difficult to detect by molecular tools. Methodological advances have made repeat expansion (RE) detection with whole genome sequencing (WGS) feasible. We recruited a multi-generational family (family A) ascertained for genetic studies of autism spectrum disorder. WGS was performed on seven children from four nuclear families from family A and analyzed for REs of STRs known to cause neurological disorders. We detected an expansion of a heterozygous intronic CCTG STR in CNBP in two siblings. This STR causes myotonic dystrophy type 2 (DM2). The expansion did not segregate with the ASD phenotype. Repeat-primed PCR showed that the DM2 CCTG motif was expanded above the pathogenic threshold in both children and their mother. On subsequent examination, the mother had mild features of DM2. We show that screening of STRs in WGS datasets has diagnostic utility, both in the clinical and research domain, with potential management and genetic counseling implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.