Abstract

BackgroundUneven ground is a frequently encountered, yet little-studied challenge for individuals with amputation. The absence of control at the prosthetic ankle to facilitate correction for surface inconsistencies, and diminished sensory input from the extremity, add unpredictability to an already complex control problem, and leave limited means to produce appropriate corrective responses in a timely manner. Whole body angular momentum, L, and its variability across several strides may provide insight into the extent to which an individual can regulate their movement in such a context. The aim of this study was to explore L in individuals with a transtibial amputation, when challenged by an uneven surface. We hypothesized that, similar to previous studies, sagittal plane L would be asymmetrical on uneven terrain, and further, that uneven terrain would evoke a greater variability in L from stride to stride in individuals with amputation in comparison to unimpaired individuals, due to a limited ability to discern and correct for changing contours beneath the prosthetic foot.MethodsWe examined sagittal plane L in ten individuals with a unilateral transtibial amputation and age- and gender- matched control participants walking on flat (FT) and uneven (UT) treadmills. The average range of L in the first 50% of the gait cycle (LR), the average L at foot contact (LC) and their standard deviations (vLR, vLC) were computed over 60 strides on each treadmill.ResultsOn both surfaces we observed a higher LR on the prosthetic side and a reduced LC on the sound side (p < 0.001) in the amputee cohort, consistent with previous findings. UT invoked an increase in LC (p = 0.006), but not LR (p = 0.491). vLR, and vLC were higher in individuals with amputation (p < 0.001, p = 0.002), and increased in both groups on UT (p < 0.001).ConclusionsThese findings support previous assertions that individuals with amputation regulate L less effectively, and suggest that the deficits of the prosthesis are exacerbated on uneven terrain, potentially to the detriment of balance. Further, the results indicate that a greater demand may be placed on the unaffected side to control movement.

Highlights

  • Uneven ground is a frequently encountered, yet little-studied challenge for individuals with amputation

  • Average sagittal plane whole body angular momentum at foot contact (LC) and during stance phase (LR) As anticipated, and consistent with previous findings [18, 19], sagittal plane L was asymmetrical in the individuals with amputation (Fig. 3a), typically with a greater range from the positive peak to the negative peak during the first half of the prosthetic side gait cycle in comparison to the sound side

  • Average Lc results revealed that normalized angular momentum was greater at foot contact on Uneven terrain (UT) in comparison to FT, through a main effect of terrain (F = 9.631; p = 0.006; ηP2 = 0.345)

Read more

Summary

Introduction

Uneven ground is a frequently encountered, yet little-studied challenge for individuals with amputation. The aim of this study was to explore L in individuals with a transtibial amputation, when challenged by an uneven surface. Walking on non-level ground, by nature, demands subtle or marked alterations to movement on a step-by-step basis, in order to maintain balance and propulsion in the face of inconsistencies underfoot. For individuals with a transtibial amputation, appropriate changes must be made lacking the precise control, active propulsion and adaptable compliance of a natural ankle, alongside the tactile and proprioceptive mechanisms that aid in the determination of the quality and contour of the ground [4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call