Abstract

ObjectiveTo avoid deviation caused by the traditional scale method, the present study explored the accuracy, advantages, and disadvantages of different objective detection methods in evaluating lower extremity motor function in elderly individuals.MethodsStudies on lower extremity motor function assessment in elderly individuals published in the PubMed, Web of Science, Cochrane Library and EMBASE databases in the past five years were searched. The methodological quality of the included trials was assessed using RevMan 5.4.1 and Stata, followed by statistical analyses.ResultsIn total, 19 randomized controlled trials with a total of 2626 participants, were included. The results of the meta-analysis showed that inertial measurement units (IMUs), motion sensors, 3D motion capture systems, and observational gait analysis had statistical significance in evaluating the changes in step velocity and step length of lower extremity movement in elderly individuals (P < 0.00001), which can be used as a standardized basis for the assessment of motor function in elderly individuals. Subgroup analysis showed that there was significant heterogeneity in the assessment of step velocity [SMD=-0.98, 95%CI(-1.23, -0.72), I2 = 91.3%, P < 0.00001] and step length [SMD=-1.40, 95%CI(-1.77, -1.02), I2 = 86.4%, P < 0.00001] in elderly individuals. However, the sensors (I2 = 9%, I2 = 0%) and 3D motion capture systems (I2 = 0%) showed low heterogeneity in terms of step velocity and step length. The sensitivity analysis and publication bias test demonstrated that the results were stable and reliable.Conclusionobservational gait analysis, motion sensors, 3D motion capture systems, and IMUs, as evaluation means, play a certain role in evaluating the characteristic parameters of step velocity and step length in lower extremity motor function of elderly individuals, which has good accuracy and clinical value in preventing motor injury. However, the high heterogeneity of observational gait analysis and IMUs suggested that different evaluation methods use different calculation formulas and indicators, resulting in the failure to obtain standardized indicators in clinical applications. Thus, multimodal quantitative evaluation should be integrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.