Abstract

Anthropogenic emissions, originating from human activities, stand as the primary contributors to PM2.5, which is recognized as a global health threat. The disease burden associated with PM2.5 has been extensively documented. However, the prevailing estimations have predominantly relied on PM2.5 exposure-response functions, neglecting the distinct risks posed by PM2.5 from various sources. China has experienced a significant reduction in the PM2.5 concentration due to stringent emission controls. With diverse sources and abundant mortality data, this situation provides a unique opportunity to estimate short-term source-specific attributable mortality. Our approach involves an integrated unequal health risk-oriented modeling in China, incorporating a source-oriented Community Multiscale Air Quality model, an adjustment and downscaling method for exposure measurement, a generalized linear model with random-effects meta-analysis, and premature mortality estimation. Adhering to the unequal health risk concept, we calculated the attributable mortality of multiple PM2.5 sources by determining the source risk-adjusted factor. In this study, we observed varying excess risks associated with multiple PM2.5 sources, with transportation-related PM2.5 exhibiting the most substantial association. An interquartile range increase (7.65 μg/m3) was linked to a 1.98% higher daily nonaccidental mortality. Residential use- and transportation-related PM2.5 emerged as the two principal sources of premature mortality. In 2018, a remarkable 53,381 avoiding deaths were estimated compared to 2013, and over 67% of these were attributed to reductions in coal-dependent sources. Notably, transportation-related PM2.5 emerged as the largest contributor to premature mortality in 2018. This study underscores the significance of a new source-oriented health risk assessment to support actions aimed at reducing air pollution. It strongly advocates for heightened attention to PM2.5 reductions in the transportation sector in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call