Abstract

Studies on the CO2 emissions from the transportation sector in China are increasing, but their findings are inconclusive. The main reason is that the spatial correlation of CO2 emissions from the regional transportation sector has been ignored in examinations of the driving factors of CO2 emissions from this sector. In this paper, new emission factors are adopted to calculate the CO2 emission levels from the transportation sector in Chinese provinces. By fully considering the spatial correlation of regional CO2 emissions and based on a two-way Durbin model incorporating both spatial and temporal fixed effects, the driving factors of CO2 emissions from the transportation sector in China are studied. The CO2 and spatial regression results for the transportation sector in China suggest the following: 1) Most of the regions with the highest CO2 emissions from the Chinese transportation sector are located on the east coast; they have gradually expanded over time to include the central and western regions. 2) The CO2 emissions from the transportation sector are higher in South China than in North China, and the regions with higher CO2 emissions have gradually shifted from north to south. 3) Transportation activity intensity, urbanization level, technological level, industrial structure and per capita GDP greatly impact CO2 emissions from the transportation sector in each province of China. Among these factors, transportation activity intensity, urbanization level, and per capita GDP exert not only direct effects but also indirect effects, whereas technological level and industrial structure exert only direct effects.

Highlights

  • Forty years after the reform and opening up, the economic development of China has achieved world-renowned achievements

  • Equation 1 describes the specific calculation method (Shan et al, 2018): CEi ADi × NCVi × CCi × Oi where CEi is the CO2 emissions generated by the different types of fuels in the transportation sector; ADi is the consumption of the different fuel types in the transportation activities within the province boundary; NCVi is the net calorific value generated by the combustion of a unit of the different types of fossil fuels; CCi is the calorific value of a unit of fossil fuels consumed in the transportation activities; Oi is the oxidation efficiency; and i is the oxidation rate of fossil fuels in the combustion process

  • To reveal the CO2 emissions from the Chinese transportation sector in a more intuitive manner, Figures 1, 2 were constructed, which depict the spatial changes in the CO2 emissions from the transportation sector of China from 1997 to 2016 and those from the various provincial transportation sectors, respectively

Read more

Summary

Introduction

Forty years after the reform and opening up, the economic development of China has achieved world-renowned achievements. The advancement of the transportation industry has played a substantial role in promoting economic development. While the demand for transportation services is strengthening, the CO2 emissions from the transportation sector are increasing, resulting in increasingly serious environmental pollution. In 2017, China’s transportation sector contributed 4.4% of the country’s GDP, but its energy consumption accounted for 9.8% of its total energy consumption (Yearbook, 2018). The rapid growth of energy consumption in China’s transportation sector over the past forty years has exacerbated its CO2 emissions, and the CO2 emissions growth rate of its transportation sector is much higher than that of other industry sectors (Xie et al, 2019)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call