Abstract

To study the undrained behavior of natural marine clay under cyclic loading, two kinds of stress-controlled cyclic triaxial tests were conducted on natural K 0-consolidated Wenzhou clay. In the Series I tests, samples were cyclically sheared until failure, and the accumulative behavior was studied; based on the results, a suitable cyclic failure criterion is suggested for natural clays. The effect of loading frequency was also investigated, and it was observed that the loading duration t is a key factor in controlling the undrained cyclic behavior. In the Series II tests, cyclic undrained tests followed by strain-controlled monotonic compression tests were carried out, and special attention was given to changes in the undrained strength after cyclic loading. The degradation of the post-cyclic peak strength was affected by the accumulative behavior during cyclic shearing, but the deviatoric stresses at the critical state were nearly constant. Finally, the accumulative behavior of natural clays was simulated using a proposed anisotropic elastic viscoplastic model with a pseudo-static method of equivalent undrained creep, and the results indicate that this equivalent creep simplification is suitable in practice. By taking the apparent overconsolidation after cyclic loading into account, the post-cyclic strength degradation can also be explained by this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.