Abstract

Abstract Electrochemical water splitting into hydrogen and oxygen in neutral electrolytes has great significance for future energy supply security, potentially offering a pathway for H2 generation from seawater. However, the electrocatalytic hydrogen evolution reaction (HER) generally occurs at low rates in neutral solutions due to the low proton concentration in such media. Herein, we fabricated a novel HER catalyst capable of efficient H2 evolution in water at neutral pH, comprising a nickel-molybdenum nitride nanowire array modified with metallic Ni nanoparticles (Ni/NiMoN). The entire Ni/NiMoN array was supported on a Cu foam. The Ni nanoparticles promoted the dissociation of adsorbed water to enhance the supply of protons in the neutral electrolyte, whilst the nanowire array imparted the electrode surface with underwater superaerophobic properties, thus allowing H2 gas bubbles to detach from the electrode in a facile manner. On the basis of the synergies realized between the different electrode components, the Ni/NiMoN nanowire array electrode offered exceptional HER performance, with an overpotential of only 37 mV at a current density of 10 mA cm−2 in a neutral electrolyte. Results guide the development of next-generation earth-abundant element electrocatalysts for HER in neutral media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.