Abstract

In this paper, the gradient anechoic coating whose density changes exponentially along direction of thickness is investigated. A numerical model is established by finite element method (FEM) to analyze the underwater sound absorption performance under different density distribution. The calculation results show that the exponential anechoic coating has better sound absorption performance compared with the homogeneous medium and linear anechoic coating. In addition, a discrete layered method is proposed to achieve gradient characteristics. In order to change the equivalent density of each layer, periodically distributed semi-cylindrical steel scatterers with different diameters are embedded in each layer. Therefore, the density function of the whole coating changes in exponential gradient with stepped function. Based on the sound absorption mechanism of multiple scattering and waveform conversion, the sound absorption is improved in low-frequency band from 0 Hz to 1000 Hz. The exponential gradient anechoic coating has potential applications in underwater sound absorption and vibration control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.