Abstract
The high sensitivity and picosecond time resolution of single-photon avalanche diodes (SPADs) can improve the operational range and imaging accuracy of underwater detection systems. When an underwater SPAD imaging system is used to detect targets, backward-scattering caused by particles in water often results in the poor quality of the reconstructed underwater image. Although methods such as simple pixel accumulation have been proven to be effective for time-photon histogram reconstruction, they perform unsatisfactorily in a highly scattering environment. Therefore, new reconstruction methods are necessary for underwater SPAD detection to obtain high-resolution images. In this paper, we propose an algorithm that reconstructs high-resolution depth profiles of underwater targets from a time-photon histogram by employing the K-nearest neighbor (KNN) to classify multiple targets and the background. The results contribute to the performance of pixel accumulation and depth estimation algorithms such as pixel cross-correlation and ManiPoP. We use public experimental data sets and underwater simulation data to verify the effectiveness of the proposed algorithm. The results of our algorithm show that the root mean square errors (RMSEs) of land targets and simulated underwater targets are reduced by 57.12% and 23.45%, respectively, achieving high-resolution single-photon depth profile reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.