Abstract

The underwater imaging environment is complex, and the application of conventional target detection algorithms to the underwater environment has yet to provide satisfactory results. Therefore, underwater optical image target detection remains one of the most challenging tasks involved with neighborhood-based techniques in the field of computer vision. Small underwater targets, dispersion, and sources of distortion (such as sediment and particles) often render neighborhood-based techniques insufficient, as existing target detection algorithms primarily focus on improving detection accuracy and enhancing algorithm complexity and computing power. However, excessive extraction of deep-level features leads to the loss of small targets and decrease in detection accuracy. Moreover, most underwater optical image target detection is performed by underwater unmanned platforms, which have a high demand of algorithm lightweight requirements due to the limited computing power of the underwater unmanned platform with the mobile vision processing platform. In order to meet the lightweight requirements of the underwater unmanned platform without affecting the detection accuracy of the target, we propose an underwater target detection model based on mobile vision transformer (MobileViT) and YOLOX, and we design a new coordinate attention (CA) mechanism named a double CA (DCA) mechanism. This model utilizes MobileViT as the algorithm backbone network, improving the global feature extraction ability of the algorithm and reducing the amount of algorithm parameters. The double CA (DCA) mechanism can improve the extraction of shallow features as well as the detection accuracy, even for difficult targets, using a minimum of parameters. Research validated in the Underwater Robot Professional Contest 2020 (URPC2020) dataset revealed that this method has an average accuracy rate of 72.00%. In addition, YOLOX’s ability to compress the model parameters by 49.6% efficiently achieves a balance between underwater optical image detection accuracy and parameter quantity. Compared with the existing algorithm, the proposed algorithm can carry on the underwater unmanned platform better.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.