Abstract

This paper deals with the problem of bringing the end effector (grip center) of an underwater vehicle anthropomorphic manipulator to a predetermined position in a given time using the terminal state method. A dynamic model with the account of joint drives dynamics is formulated on the basis of obtained kinematic model constructed by using the Denavit-Hartenberg method (DH model). The DH model is used in a terminal nonlinear criterion that displays estimate of the proximity of the effector's orientation and position to the specified values. The dynamic model is adapted for effective application of the author's terminal state method (TSM) so that it forms a system of differential equations for the rotation angles of manipulator links around the longitudinal and transverse axes, having only desired TSM-controls in the right parts. The converted model provides simplifications of controls calculation by eliminating the numerical solution of special differential equations, that is needed in the case of using in TSM nonlinear dynamic models in general form. The found TSM-controls are further used in expressions for control actions on joints electric drives obtained on the basis of electric drives dynamic models. Unknown drives parameters as functions of links rotation angles or other unknown factors, are proposed to be determined experimentally. Such two-step procedure allowed to get drive control in the form of algebraic and transcendental expressions. Finally, by applying the developed software, simulation results of the manipulator end effector moving to the specified positions on the edge of the working area are presented. The resulting error (without accounting measurement error) does not exceed 2 centimeters at the 1.2 meters distance by arm reaching maximum of length ability. The work was performed under the Federal program of developing a robotic device for underwater research in shallow depths (up to 10 meters).

Highlights

  • представлены результаты моделирования процессов приведения конечного эффектора манипулятора в заданные положения на границах рабочей области с помощью разработанного программного обеспечения

  • Shushlyapin E.A., Bezuglaya A.E. Analytical Synthesis of Regulators for Nonlinear Systems with a Terminal State Method on Examples of Motion Control of a Wheeled Robot and a Vessel // Hindawi Journal of Applied Mathematics, vol 2018 Article ID 4868791, 2018, 13 pages

Read more

Summary

Fj j 1 j

Для определения θi воспользуемся (4), определив соотношение между индексом j вектора δ и индексами ошибки ks , которое имеет вид:. Смысл последнего выражения в том, что, к примеру, 23 , то есть ks при k 2, s 3 соответствует восьмому элементу вектора δ. Окончательное выражение для якорного напряжения с моделью привода (7) получает вид: UAi. Выражения для производных могут быть получены на основе (10), (13) и имеют вид: a1

Fj j 1 j θ t A1 Ai 1
11. Подводный робот политехников

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.