Abstract
Active underwater polarization imaging is a common underwater imaging method, which uses the polarization difference between the reflected light and the scattered light in the underwater scene to suppress the scattered light, so as to improve the imaging quality of the underwater scene. However, the implementation often requires the acquisition of multiple polarization images, which is not suitable for the restoration of images of underwater motion scenes. To address the problem, a U-AD-Net deep learning network model based on a single polarized image is proposed, taking the polarization information of the single polarized image as the feature input, based on the classic U-Net network model, and introducing Dense-Net and spatial attention module. The learning ability and generalization ability of the proposed model for deep features are enhanced, and the polarization information that is most helpful to the image restoration is extracted, so as to restore the scene image more comprehensively. IE, AG, UCIQE, and SSIM are selected as evaluation metrics to assess the quality of the restored images. Experimental results show that the images restored through this proposed method contain richer detail information, having an obvious advantage to the existing network models. Since only a single polarized image is needed for restoration, this method has dynamic adaptability to underwater moving scene restoration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have