Abstract

Underwater laser machining process is a material removal technique that can minimize thermal damage and offer a higher machining rate than the laser ablation in ambient air. This study applied the underwater method associated with a nanosecond pulse laser for turning a commercially pure titanium rod. The effects of laser power, surface speed and number of laser passes on machined depth and surface roughness were investigated in this work. The results revealed that a deeper cut depth and smoother machined surface than those obtained from the laser ablation in ambient air were achievable when the underwater laser turning process was applied. The machined depth and surface roughness were found to significantly increase with the laser power and number of laser passes. The findings of this study can disclose the insight as well as potential of the underwater laser turning process for titanium and other similar metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call