Abstract

Underwater image enhancement (UIE) plays an essential role in improving the quality of raw images captured in an underwater environment. Existing UIE methods can be categorized into two types: handcraft-designed and deep learning-based methods. Generally, the handcraft-designed methods are more explainable due to the leverage of knowledge-based image priors, while the deep learning-based methods are usually criticized for their weak interpretability. In this study, we address this issue by integrating the merits of both handcraft-designed and deep learning-based methods. Specifically, a physical underwater imaging model-inspired deep CNN for UIE is designed. Instead of estimating a global background light magnitude and a transmission matrix separately in traditional image restoration-based UIE methods, we directly generate a single variable as the joint estimation of these two parameters within a deep CNN and directly recover the enhanced image as an output according to a reformulated physical underwater imaging model. The whole network is trained in an end-to-end manner and more importantly has good interpretability. The proposed method has been validated for the UIE task on a real-world underwater image dataset and the experimental results well demonstrate the superiority of our method over the existing ones for UIE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.