Abstract
A combination of experimental (gravimetry, microcalorimetry, and quasi-elastic neutron scattering) measurements and molecular modeling was employed to understand the coadsorption of CO2 and CH4 in the zirconium terephthalate UiO-66(Zr) material from both the thermodynamic and kinetic points of view. It was shown that each type of molecules adsorb preferentially in two different porosities of the material, that is, while CO2 occupy the tetrahedral cages, CH4 are pushed to the octahedral cages. Further, a very unusual dynamic behavior was also pointed out with the slower molecule, that is, CO2, enhancing the mobility of the fast one, that is, CH4, that contrasts with those usually observed so far for the CO2/CH4 mixture in narrow window zeolites where the molecules are most commonly diffusing independently or slowing-down the partner species. Such behavior was interpreted in light of molecular simulations that evidenced a jump type mechanism involving a tetrahedral cages–octahedral cages–tetrahedral cages s...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have