Abstract
Interactions of water and chemical or bio-compound have a universal concern and have been extensively studied. For spectroscopic analysis, the complexity and the low resolution of the spectra make it difficult to obtain the spectral features showing the interactions. In this work, the structures and interactions in gaseous water and water-alcohol mixtures were studied using high-resolution infrared (HR-IR) spectroscopy. The spectral features of water clusters of different sizes, including dimer, trimer, tetramer and pentamer, were observed from the measured spectra of the samples in different volume concentrations, and the interactions of water and methanol/ethanol in the mixtures were obtained. In the analysis, a method based on principal component analysis was used to separate the overlapping spectra. In water-alcohol mixtures, when water is less, water molecules tend to interact with the OH groups on the exterior of the alcohol aggregate, and with the increase of water, a water cage forms around the aggregates. Furthermore, the ratio of the molecule number of methanol in the aggregate to that of water in the cage is around 1:2.3, and the ratio for ethanol is about 1:3.2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.