Abstract

The electrochemical CO2 reduction reaction (CO2RR) that transforms CO2 to CO has attracted great interest. Transition metal nanoparticles encapsulated in nitrogen-doped carbon (M@NC) catalysts exhibit outstanding catalytic performance. However, the role of metal and N species in M@NC catalysts remains unclear. In this work, Co@C, Co@NC, Ni@C, and Ni@NC catalysts were achieved and employed in CO2RR. The Ni@NC catalyst exhibits an industry level current density of 220 mA cm−2 and a high Faradaic efficiency of 98% for CO production at − 0.87 V vs. RHE for 100 h. In addition, the N species, especially the pyrrolic-N in the shell of Ni@NC material provide active sites for adsorbing and activating CO2 molecules, and metal nanoparticles improve the electronic structure of N species, thereby decreasing their ability for radical attack (*COOH, *CO, and *H). Consequently, this work can guide the design of M@NC catalyst for CO2RR to CO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.