Abstract

Liquid-infused surfaces (LISs) have attracted tremendous attention in recent years owing to their excellent surface properties, such as self-cleaning and anti-fouling. Understanding the effect of lubricant composition on LIS performance is of vital importance, which will help establish the criteria to choose suitable infusing lubricants for specific applications. In this work, the role of chemical composition of lubricant in the properties of LISs was investigated. The apparent water contact angle θapp was dependent on the temperature and beeswax/silicone oil ratio. Nevertheless, the trend of moving velocity of water drop on the tilted LISs did not follow that of θapp at 20 °C and 37 °C, which was attributed to the increased lubricant viscosity with beeswax/silicone oil ratio. At 60 °C, the drop velocity and θapp shared the similar variation trend with beeswax/silicone oil ratio, highlighting the significant role of chemistry of the components in beeswax. The alkanes and fatty acids promoted the drop movement, while the fatty acid esters impeded the movement. The interaction forces between water drop and lubricant surfaces were measured using atomic force microscopy. It was demonstrated that the interaction between water drop and lubricant was not the only factor to control the drop movement, while the interaction between lubricant and substrate as well as of lubricant itself also determined the movement. When the adhesions of water-lubricant and lubricant-substrate were similar for different lubricants, the influence of cohesion of lubricant became significant. This work provides useful insights into the fundamental understanding of the interfacial interactions of test drop, infusing lubricant and solid substrate of LISs, and the effect of infusing lubricant composition on the LIS performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.