Abstract
Self-assembled monolayers (SAMs) are frequently used for interfacial dipole engineering in organic electronics and photovoltaics. This is mostly done by the attachment of dipolar tail groups onto the molecular backbone of the SAM precursors. The alternative concept of embedded dipoles involves the incorporation of polar group(s) into the backbone. This allows one to decouple the tuning of the electrostatic properties of the SAM from the chemical identity of the SAM–ambient interface. Here we present design and synthesis of particularly promising SAM precursors utilizing this concept. These precursors feature the thiol-docking group and a short heteroaromatic backbone, consisting of a nonpolar phenyl ring and a polar pyrimidine group, embedded in two opposite orientations. Packing density, molecular orientation, structure, and wetting properties of the SAMs on Au substrates are found to be nearly independent of their chemical structure, as shown by a variety of complementary experimental techniques. A furt...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.