Abstract

Solder paste is primarily used as a bonding medium for surface mount assemblies (SMA) in the electronics industry, and is typically deposited using the stencil printing process. Stencil printing is a very important and critical stage in the reflow soldering of surface mount devices, and a high proportion of all SMA defects are related to this process. This is likely to continue with the drive toward the introduction of lead-free solder pastes. Work is continuing on the metallurgical properties of these lead-free solders, including solder joint strength and material compatibility. However, the initial challenge for the new Pb-free formulations is in achieving repeatable solder deposit from print to print and from pad to pad. To meet this challenge, new flux formulations are being developed. For a smooth transition to Pb-free soldering formulations, a proper understanding of the solder paste printing performance is necessary. The key parameters that affect solder paste printing have been identified and are the subject of numerous studies. In lead-free solder paste, the replacement of lead with other elements (including Bi, Cu) changes the density of this dense suspension. In this paper, we investigate the effects of printer parameters, i.e. squeegee speed and pressure (defined as the process window) on the printing performance of a variety of lead-free solder pastes. A three-level design of experiment on these factors was used. Comparisons are presented with lead-rich solder pastes. The metal content of the lead-free solders had a significant effect on the process window.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call