Abstract

The study of ultrafast photoinduced dynamics of adsorbates on metal surfaces requires thorough investigation of laser-excited electrons and, in many cases, the highly excited surface lattice. While ab initio molecular dynamics with electronic friction and thermostats (Te, Tl)-AIMDEF addresses such complex modeling, it imposes severe computational costs, hindering quantitative comparison with experimental desorption probabilities. In order to bypass this limitation, we utilize the embedded atom neural network method to construct a potential energy surface (PES) for the coadsorption of CO and O on Ru(0001). Our results demonstrate that this PES not only reproduces the short-time ab initio dynamics but is also able to yield statistically significant data for long lasting trajectories that correlate well with experimental findings. Furthermore, the analysis of the laser-induced dynamics reveals the existence of a dynamic trapping state that acts as a precursor for CO desorption, and it is not observed under thermal conditions. Altogether, our results validate the underlying theoretical framework, providing robust support for the description of not only the photoinduced desorption but also the oxidation of CO in terms of nonequilibrated but thermal hot electrons and phonons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.