Abstract

The [CpFe(CO)(CN)2]- unit is an excellent structural model for the Fe(CO)(CN)2 moiety of the active site found in [NiFe] hydrogenases. Ultrafast infrared (IR) pump-probe and 2D-IR spectroscopy have been used to study K[CpFe(CO)(CN)2] (M1) in a range of protic and polar solvents and as a dry film. Measurements of anharmonicity, intermode vibrational coupling strength, vibrational relaxation time, and solvation dynamics of the CO and CN stretching modes of M1 in H2O, D2O, methanol, dimethyl sulfoxide, and acetonitrile reveal that H-bonding to the CN ligands plays an important role in defining the spectroscopic characteristics and relaxation dynamics of the Fe(CO)(CN)2 unit. Comparisons of the spectroscopic and dynamic data obtained for M1 in solution and in a dry film with those obtained for the enzyme led to the conclusion that the protein backbone forms an important part of the bimetallic active site environment via secondary coordination sphere interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.