Abstract
A potential advantage of quantum machine learning stems from the ability of encoding classical data into high dimensional complex Hilbert space using quantum circuits. Recent studies exhibit that not all encoding methods are the same when representing classical data since certain parameterized circuit structures are more expressive than the others. In this study, we show the difference in encoding techniques can be visualized by investigating the topology of the data embedded in complex Hilbert space. The technique for visualization is a hybrid quantum based topological analysis which uses simple diagonalization of the boundary operators to compute the persistent Betti numbers and the persistent homology graph. To augment the computation of Betti numbers within a NISQ framework, we suggest a simple hybrid algorithm. Through an illuminating example of a synthetic data set and the methods of angle encoding, amplitude encoding, and IQP encoding, we reveal topological differences between the encoding methods, as well as differences with the original data. Consequently, our results suggest the encoding method needs to be considered carefully within different quantum machine learning models since it can strongly affect downstream analysis like clustering or classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.