Abstract
Oncolytic herpes simplex viruses (oHSV) preferentially replicate in cancer cells while inducing antitumor immunity, and thus, they are often referred to as in situ cancer vaccines. OHSV infection of tumors elicits diverse host immune responses comprising both innate and adaptive components. Although the innate and adaptive immune responses primarily target the tumor, they also contribute to antiviral immunity, limiting viral replication/oncolysis. OHSV-encoded proteins use various mechanisms to evade host antiviral pathways and immune recognition, favoring oHSV replication, oncolysis, and spread. In general, oHSV infection and replication within tumors results in a series of sequential events, such as oncolysis and release of tumor and viral antigens, dendritic cell-mediated antigen presentation, Tcell priming and activation, Tcell trafficking and infiltration to tumors, and Tcell recognition of cancer cells, leading to tumor (and viral) clearance. These sequential events align with all steps of the cancer-immunity cycle. However, a comprehensive understanding of the interplay between oHSV and host immune responses is crucial to optimize oHSV-induced antitumor immunity and efficacy. Therefore, this review aims to elucidate oHSV's communication with innate and adaptive immune systems and use such interactions to improve oHSV's potential as a potent immunovirotherapeutic agent against cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have