Abstract
Understanding the impact of sintering temperature on the physical and chemical properties of Ni-BaCe0.54Zr0.36Y0.1O3-δ (Ni-BCZY) composite anode is worthy of being investigated as this anode is the potential for protonic ceramic fuel cell (PCFC) application. Initially, NiO–BCZY composite powder with 50 wt% of NiO and 50 wt% of BCZY is prepared by the sol–gel method using citric acid as the chelating agent. Thermogravimetric analysis indicates that the optimum calcination temperature of the synthesised powder is 1100 °C. XRD result shows that the calcined powder exists as a single cubic phase without any secondary phase with the lattice parameter (a) of 4.332 Å. FESEM analysis confirms that the powder is homogeneous and uniform, with an average particle size of 51 ± 16 nm. The specific surface area of the calcined powder measured by the Brunauer–Emmett–Teller (BET) technique is 6.25 m2/g. The thickness, porosity, electrical conductivity and electrochemical performance of the screen-printed anode are measured as a function of sintering temperature (1200–1400 °C). The thickness of the sintered anodes after the reduction process decreases from 28.95 μm to 26.18 μm and their porosity also decreases from 33.98% to 26.93% when the sintering temperature increases from 1200 °C to 1400 °C. The electrical conductivities of the anodes sintered at 1200 °C, 1300 °C and 1400 °C are 443 S/cm, 633 S/cm and 1124 S/cm at 800 °C, respectively. Electrochemical studies showed that the anode sintered at 1400 °C shows the lowest area specific resistance (ASR) of 1.165 Ω cm2 under a humidified (3% H2O) gas mixture of H2 (10%) and N2 (90%) at 800 °C. Further improvement of the anode’s performance can be achieved by considering the properties of the screen-printing ink used for its preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.