Abstract

• In-situ electrochemical nano-indentation test was applied on Cantor alloy. • The pop-in behavior was investigated under different H charging conditions. • Both pop-in width and load were reversibly reduced by H. • The H reduction effect on pop-in width is more noticeable than that of pop-in load. • An energy balance model was used showing H reduced dislocation mobility. The variations in the pop-in behavior of an equiatomic CoCrFeMnNi high-entropy alloy under different hydrogen charging/discharging conditions were characterized via in-situ electrochemical nanoindentation. Results show that hydrogen accumulatively reduces both pop-in load and width, among which the reduction of pop-in width is more noticeable than that of pop-in load. Moreover, the hydrogen reduction effect on both pop-in load and width is reversible when hydrogen is degassed during anodic discharging process. Particularly, the hydrogen-reduced pop-in width was studied in detail by a comprehensive energy balance model. It is quantitatively shown that the dissolved hydrogen enhances lattice friction, leading to an increased resistance to dislocation motion. As a result, fewer dislocations can be generated with a higher hydrogen concentration, causing a smaller pop-in width. This is the first time that the pop-in width indicated dislocation mobility under hydrogen impact is quantitively revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.