Abstract
As a step toward an in-depth understanding of the electron paramagnetic resonance parameters of glycyl radicals in proteins, the hyperfine tensors and, particularly, the g-tensor of N-acetylglcyl in the environment of a single crystal of N-acetylglycine have been studied by systematic state-of-the-art quantum chemical calculations on various suitable model systems. The quantitative computation of the g-tensors for such glycyl-derived radicals is a veritable challenge, mainly because of the very small g-anisotropy combined with a nonsymmetrical, delocalized spin-density distribution and several atoms with comparable spin-orbit contributions to the g-tensors. The choice of gauge origin of the magnetic vector potential, and of approximate spin-orbit operators, both turn out to be more critical than found in previous studies of g-tensors for organic radicals. Environmental effects, included by supermolecular hydrogen-bonded models, were found to be moderate, because of a partial compensation between the influences from intramolecular and intermolecular hydrogen bonds. The largest effects on the g-tensor are caused by the conformation of the radical. The density functional theory methods employed systematically overestimate both the Delta gx and Delta gy components of the g-tensor. This is important for parallel investigations on the protein-glycyl radicals. The 1H alpha and 13C alpha hyperfine couplings depend only slightly on the supermolecular model chosen and appear less sensitive probes of detailed structure and environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.