Abstract

For understanding the structures and the hydrogen bonding in alcohol solutions, the changes of the structures and hydrogen bonding with temperature were studied by temperature-dependent near-infrared (NIR) spectroscopy. The spectral features of eight alcohol species including the monomer, dimer and linear or cyclic aggregates (trimer, tetramer and polymer) were found from the resolution-enhanced spectra calculated by continuous wavelet transform. The changes of the eight species with concentration and temperature were analyzed using the intensity variation of the corresponding spectral features and two-dimensional correlation NIR spectroscopy. The aggregates were found to form at a very low concentration and the stability of the seven aggregates with temperature was found in an order of cyclic tetramer > linear polymer > linear tetramer > cyclic trimer > linear trimer > cyclic polymer > dimer. Furthermore, the formation of the aggregates was found to be affected by the chain length. The increase of the chain length is beneficial for the formation of cyclic tetramer and polymer due to the hydrophobic effect, but is an adverse effect for the formation of linear polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.