Abstract

Coastal zones connect terrestrial and marine ecosystems forming a unique environment that is under increasing anthropogenic pressure. Rising sea levels, sinking coasts, and changing precipitation patterns modify hydrodynamic gradients and may enhance sea-land exchange processes in both tidal and non-tidal systems. Furthermore, the removal of flood protection structures as restoration measure contributes locally to the changing coastlines. A detailed understanding of the ecosystem functioning of coastal zones and the interactions between connected terrestrial and marine ecosystems is still lacking. Here, we propose an interdisciplinary approach to the investigation of interactions between land and sea at shallow coasts, and discuss the advantages and the first results provided by this approach as applied by the research training group Baltic TRANSCOAST. A low-lying fen peat site including the offshore shallow sea area on the southern Baltic Sea coast has been chosen as a model system to quantify hydrophysical, biogeochemical, sedimentological, and biological processes across the land-sea interface. Recently introduced rewetting measures might have enhanced submarine groundwater discharge as indicated by distinct patterns of salinity gradients in the near shore sediments, making the coastal waters in front of the study site a mixing zone of fresh- and brackish water. High nutrient loadings, dissolved inorganic carbon, and dissolved organic matter originating from the degraded peat may affect micro- and macro-phytobenthos, with the impact propagating to higher trophic levels. The terrestrial part of the study site is subject to periodic brackish water intrusion caused by occasional flooding, which has altered the hydraulic and biogeochemical properties of the prevailing peat soils. The stable salinity distribution in the main part of the peatland reveals the legacy of flooding events. Generally, elevated sulfate concentrations are assumed to influence greenhouse gas emissions, mainly by inhibiting methane production, yet our investigations indicate complex interactions between the different biogeochemical element cycles (e.g. carbon and sulfur) caused by connected hydrological pathways. In conclusion, sea-land interactions are far reaching, occurring on either side of the interface, and can only be understood when both long-term and event-based patterns and different spatial scales are taken into account in interdisciplinary research that involves marine and terrestrial expertise.

Highlights

  • Coastal zones connect terrestrial and marine ecosystems forming a unique environment that is under increasing anthropogenic pressure

  • We propose an interdisciplinary approach to the investigation of interactions between land and sea at shallow coasts, and discuss the advantages and the first results provided by this approach as applied by the research training group Baltic TRANSCOAST

  • The aim of the present paper is to outline the hypotheses and research questions of the interdisciplinary approach of Baltic TRANSCOAST and present the first results generated by this approach as a roadmap to gain deeper insight into processes across lowland coastal transects that can be applied to investigations of similar shallow coastal systems worldwide

Read more

Summary

Frontiers in Marine Science

Received: 30 April 2018 Accepted: 06 September 2018 Published: 26 September 2018. Citation: Jurasinski G, Janssen M, Voss M, Böttcher ME, Brede M, Burchard H, Forster S, Gosch L, Gräwe U, Gründling-Pfaff S, Haider F, Ibenthal M, Karow N, Karsten U, Kreuzburg M, Lange X, Leinweber P, Massmann G, Ptak T, Rezanezhad F, Rehder G, Romoth K, Schade H, Schubert H, Schulz-Vogt H, Sokolova IM, Strehse R, Unger V, Westphal J and Lennartz B (2018) Understanding the Coastal Ecocline: Assessing Sea–Land Interactions at Non-tidal, Low-Lying Coasts Through. In the case of the southern Baltic Sea coast with its abundant coastal peatlands, the fluxes across the sediment water interface might be modified hydrodynamically by the presence of outcropping peat layers in the water, which may serve as a source of carbon and nutrients to the shallow sea. These outcrops are the result of the receding shoreline over the past several thousand years because of sea-level rise (Harff et al, 2017)

BALTIC TRANSCOAST APPROACH
STUDY SITE AND INSTRUMENTATION
Instrumentation and Field Data Acquisition
FIRST RESULTS
Water Fluxes and Solute Transport
Methane Emissions in the Peatland
AUTHOR CONTRIBUTIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.