Abstract

The adsorption behavior of atomic oxygen and molecular O2 on the 3C–SiC(1 1 0) surface is investigated by first-principles calculations. The atomic O prefers to be adsorbed at the C top site (C–O) with adsorption energy of −1.95 eV after zero-point energy correction, followed by the C–O–Si bridge site, Si–O–Si bridge site, and the Si top site (Si–O) with adsorption energies of −1.46, −1.36, and −1.13 eV, respectively. The molecular O2 separately trapped by the second nearest neighboring C and Si atoms (C–O–O–Si, M4 type) is the most stable configuration with the adsorption energy of −2.46 eV, which is followed by the Si–O–O–Si (M5 type), C–O–O–Si (M3 type), O–Si–O (M2 type), and Si–O=O (M1 type) configurations with the adsorption energies of −2.24, −1.87, −1.07, and −0.75 eV, respectively. All these molecular O2 adsorption configurations exhibit high tendency to dissociate with the dissociation barriers range of 0.09–0.19 eV. The adsorbed atomic O seems to be easily trapped at the C–O site due to the extremely low diffusion barrier. In addition, the infrared spectra of all the atomic O and molecular O2 adsorption configurations are predicted and compared with available experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.