Abstract
The ability of a biomaterial to transport energy by conduction is best characterised in the steady state by its thermal conductivity and in the non-steady state by its thermal diffusivity. The complex hierarchical structure of most biomaterials makes the direct determination of the thermal diffusivity and thermal conductivity difficult using experimental methods. This study presents a classical molecular simulation-based approach for the thermal diffusivity and thermal conductivity prediction for a set of tropocollagen and hydroxyapatite-based idealised biomaterial interfaces. The thermal diffusivity and thermal conductivity are calculated using the presented approach at five levels of straining (10% compressive, 5% compressive, 0%, 5% tensile, 10% tensile) at 300 K. The effects of straining, interfacial period and thickness of simulated systems on the thermal properties are analysed. Analyses point out important role played by interfaces and straining in determining biomaterial thermal properties including establishment of a notion that straining can be used to tailor the thermal properties (thermal diffusivity and thermal conductivity) of the organic-inorganic interfacial system and nanocomposite systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Experimental and Computational Biomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.