Abstract

The ability of a biomaterial to transport energy by conduction is best characterized in the steady state by its thermal conductivity and in the non-steady state by its thermal diffusivity. The complex hierarchical structure of most biomaterials makes the direct determination of the thermal diffusivity and thermal conductivity difficult using experimental methods. This study presents a classical molecular simulation based approach for the thermal diffusivity and thermal conductivity prediction for a set of tropocollagen and hydroxyapatite based idealized biomaterial interfaces. The thermal diffusivity and thermal conductivity values are calculated using the presented approach at three different temperatures (300K, 500K and 700K). The effects of temperature, structural arrangements, and size of simulated systems on the thermal properties are analyzed. Analyses point out important role played by the interface orientation, interface area, and structural hierarchy. Ensuing discussions establish that the interface structural arrangement and interface orientation combined with biomimetic structural hierarchy can lead to non-intuitive thermal property variations as a function of structural features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.