Abstract

Clustering short texts (such as news titles) by their meaning is a challenging task. The semantic hashing approach encodes the meaning of a text into a compact binary code. Thus, to tell if two texts have similar meanings, we only need to check if they have similar codes. The encoding is created by a deep neural network, which is trained on texts represented by word-count vectors (bag-of-word representation). Unfortunately, for short texts such as search queries, tweets, or news titles, such representations are insufficient to capture the underlying semantics. To cluster short texts by their meanings, we propose to add more semantic signals to short texts. Specifically, for each term in a short text, we obtain its concepts and co-occurring terms from a probabilistic knowledge base to enrich the short text. Furthermore, we introduce a simplified deep learning network consisting of a 3-layer stacked auto-encoders for semantic hashing. Comprehensive experiments show that, with more semantic signals, our simplified deep learning model is able to capture the semantics of short texts, which enables a variety of applications including short text retrieval, classification, and general purpose text processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.