Abstract

With the rapid growth of social Web applications such as Twitter and online advertisements, the task of understanding short texts is becoming more and more important. Most traditional text mining techniques are designed to handle long text documents. For short text messages, many of the existing techniques are not effective due to the sparseness of text representations. To understand short messages, we observe that it is often possible to find topically related long texts, which can be utilized as the auxiliary data when mining the target short texts data. In this article, we present a novel approach to cluster short text messages via transfer learning from auxiliary long text data. We show that while some previous work exists that enhance short text clustering with related long texts, most of them ignore the semantic and topical inconsistencies between the target and auxiliary data and hurt the clustering performance. To accommodate the possible inconsistency between source and target data, we propose a novel topic model - Dual Latent Dirichlet Allocation (DLDA) model, which jointly learns two sets of topics on short and long texts and couples the topic parameters to cope with the potential inconsistency between data sets. We demonstrate through large-scale clustering experiments on both advertisements and Twitter data that we can obtain superior performance over several state-of-art techniques for clustering short text documents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.