Abstract
Collecting large-scale mobile and wearable sensor datasets from daily contexts is essential in developing machine learning models for enabling everyday affective computing applications. However, there is a lack of knowledge on data contributors' perceived benefits and risks in participating in open dataset collection projects. To bridge this gap, we conducted an in-situ study on building an open dataset with mobile and wearable devices for affective computing research (N = 100, 4 weeks). Our study results showed that a mixture of financial and altruistic benefits was important in eliciting data contribution. Sensor-specific risks were largely associated with the revelation of personal traits and social behaviors. However, most of the participants were less concerned with open dataset collection and their perceived sensitivity of each sensor data did not change over time. We further discuss alternative approaches to promote data contributors' motivations and suggest design guidelines to alleviate potential privacy concerns in mobile open dataset collection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.