Abstract

Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer. High invasiveness and heterogeneity, as well as a lack of drug targets, are the main factors leading to poor prognosis. Brain metastasis (BM) is a serious event threatening the life of breast cancer patients, especially those with TNBC. Compared with that for hormone receptor-positive and HER2-positive breast cancers, TNBC-derived BM (TNBCBM) occurs earlier and more frequently, and has a worse prognosis. There is no standard treatment for BM to date, and one is urgently required. In this review, we discuss the current knowledge regarding the developmental patterns of TNBCBM, focusing on the key events in BM formation. Specifically, we consider (i) the nature and function of TNBC cells; (ii) how TNBC cells cross the blood–brain barrier and form a fenestrated, more permeable blood–tumor barrier; (iii) the biological characteristics of TNBCBM; and (iv) the infiltration and colonization of the central nervous system (CNS) by TNBC cells, including the establishment of premetastatic niches, immunosurveillance escape, and metabolic adaptations. We also discuss putative therapeutic targets and precision therapy with the greatest potential to treat TNBCBM, and summarize the relevant completed and ongoing clinical trials. These findings may provide new insights into the prevention and treatment of BM in TNBC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call