Abstract

The precipitation-hardening Sm-Co magnets not only have irreplaceable applications under extreme conditions such as high temperatures, but are also the most typical magnets with pinning-controlled magnetization reversal mechanism. However, there have always been two views on this type of pinning, attractive or repulsive. In this article, the modification of the parallel interface to the titled interface, led to occurrence of quasi-repulsive and quasi-attractive pinning modes, by employing micromagnetic simulation methods. The corresponding domain wall energy relationship between the pinning phase and main phase was analyzed for different pinning modes, according to the morphology of domain wall from the simulation results. The analysis results indicated that relatively small difference in domain wall energy between the two phases led to quasi-repetitive and quasi-attractive pinning modes. Our findings can provide a reference for further understanding of the magnetization reversal mechanism of precipitation-hardening Sm-Co magnets. The emphasis on the influence of 1:5/2:17 interface orientation on pinning also provided a perspective on the magnetization reversal mechanism of other nanostructured permanent magnet materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call