Abstract
tDCS is widely assumed to cause neuromodulation via the electric field in the cortex acting directly on cortical neurons. However, recent evidence suggests that tDCS may indirectly influence brain activity through cranial nerve pathways, notably the trigeminal nerve, but these neuromodulatory pathways remain unexplored. To investigate the first stages in this potential pathway we developed an animal model to study the effect of trigeminal nerve direct current stimulation (TN-DCS) on neuronal activity in the principal sensory nucleus (NVsnpr) and the mesencephalic nucleus of the trigeminal nerve (MeV). We conducted experiments on twenty-four male Sprague Dawley rats (n = 10 NVsnpr, n = 10 MeV during anodic stimulation, and n = 4 MeV during cathodic stimulation). DC stimulation, ranging from 0.5 to 3 mA, targeted the trigeminal nerve’s marginal branch. Concurrently, single-unit electrophysiological recordings were obtained using a 32-channel silicon probe, encompassing three 1-min intervals: pre, during, and post-stimulation. Xylocaine trigeminal nerve blockage served as a control. TN-DCS increased neuronal spiking activity in both NVsnpr and MeV, returning to baseline during the post-stimulation phase. The 3 mA DC stimulation of the blocked trigeminal nerve failed to induce increased spiking activity in the trigeminal nuclei. These findings provide empirical support for trigeminal nuclei modulation via TN-DCS, suggesting the cranial nerve pathways could play a role in mediating the tDCS effects in humans.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have