Abstract

Understanding the nanorheology and associated intermolecular/surface forces of fluids in confined geometries or porous media is of both fundamental and practical importance, providing significant insights into various applications such as lubrication and micro/nanoelectromechanical systems. In this work, we briefly reviewed the fundamentals of nanoreheolgy, advances in experimental techniques and theoretical simulation methods, as well as important progress in the nanorheology of confined thin films. The advent of advanced experimental techniques such as surface forces apparatus (SFA), X-ray surface forces apparatus (XSFA) and atomic force microscope (AFM) and computational methods such as molecular dynamics simulations provides powerful tools to study a wide range of rheological phenomena at molecular level and nano scale. One of the most challenging issues unresolved is to elucidate the relationship between the rheological properties and structural evolution of the confined fluid films and particles suspensions. Some of the emerging research areas in the nanorheology field include, but are not limited to, the development of more advanced characterization techniques, design of multifunctional rheological fluids, bio-related nanorheology, and polymer brushes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.