Abstract

Permanganate (Mn(VII)) and ferrate ((Fe(VI)) oxidations are well-recognized as advanced treatment processes to degrade organic components detected in secondary effluents from municipal wastewater treatment plant (WWTP). However, Mn(VII) or Fe(VI) reactions are sensitive to the water matrix components, especially the dissolved effluent organic matter (EfOM) contained in secondary effluent. Here, we found that Mn(VII) or Fe(VI) hardly mineralize EfOM, but do change its molecular-level composition. Tests with representative trace organic contaminants (TrOCs) spiked to EfOM-rich wastewater effluent showed that Mn(VII) and Fe(VI) preferentially oxidize phenolic TrOCs. UV–vis and fluorescence spectroscopy analyses suggested that molecular properties associated with optical characteristics of reaction solutions are altered by treatment, including decreases in aromaticity, molecular weight, and electron-donating capacity of EfOM. At the molecular-level, the observed phenomenon is ascribed to preferential oxidation of aromatic structures and electron-rich functional groups (e.g., phenolic structures and hydroxyl groups) within EfOM, as well as the transformation and decomposition of macromolecular sulfur- and nitrogen-containing compounds (most likely proteins or microbial byproduct-like material). These findings advance the application of Mn(VII) and Fe(VI) for optimization and proper control of EfOM of emerging concern within treatment trains being developed for advanced treatment facilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.